- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Hu, Travis Shihao (1)
-
Solis, Oliver Sanchez (1)
-
Tang, Yaoyao (1)
-
Wang, Juncheng (1)
-
Xu, Quan (1)
-
Zhang, Weiye (1)
-
Zhang, Yuqi (1)
-
Zhu, Peide (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The current preparation methods of carbon quantum dots (CDs) involve many reaction parameters, which leads to many possibilities in the synthesis processes and high uncertainty of the resultant production performance. Recently, machine learning (ML) methods have shown great potential in correlating the selected features in many applications, which can help understand the relevant structure–function relationships of CDs and discover better synthesis recipes as well. In this work, we employ the ML approach to guide the blue CD synthesis in microwave systems. After optimizing the synthesis parameters and conditions, the quantum yield (QY) increases to about 200% higher than the average value of the prepared samples without ML guidance. The obtained CDs are applied as fluorescent probes to monitor hydrogen peroxide (H 2 O 2 ) in human teeth. The CD probe exhibits a linear relationship with the concentration of H 2 O 2 ranging from 0 to 1.1 M with a lower detection limit of 0.12 M, which can effectively detect the residual H 2 O 2 after bleaching teeth. This work shows that the adopted ML methods have considerable advantages in guiding the synthesis of high-quality CDs, which could accelerate the development of other novel functional materials in energy, biomedical, and environmental remediation applications.more » « less
An official website of the United States government
